みなさん、こんにちは。
受験ドクター算数・理科科の川上と申します。
1学期もいよいよあとのこり1ヶ月。
受験の天王山とも言われる夏に向け、体調・生活サイクルを整えていきましょう。
本日は図形の折り返しに関する問題に触れたいと思います。
折り返しの問題では合同・相似に注目することが一番多いのではないでしょうか。
さて、それでは問題です。
[問題]
下の図で四角形ABCDは1辺が9㎝の正方形で、BF=6㎝、FC=3㎝となるように点Fをとります。CE=4㎝となるところで点Dが点Fにくるように折り返したとき、図のXの長さを求めなさい。[立正大学付属立正改題]
下の図で四角形ABCDは1辺が9㎝の正方形で、BF=6㎝、FC=3㎝となるように点Fをとります。CE=4㎝となるところで点Dが点Fにくるように折り返したとき、図のXの長さを求めなさい。[立正大学付属立正改題]
出題頻度の高い問題です。さて、合同・相似はみつかりましたか?
この台形が合同で
この3つの三角形が相似ですね。
2つの台形は合同なのでEF=ED=5㎝となり、3:4:5の直角三角形の辺の比を利用してどんどん長さを出していきます。
3に当たる量が1.5㎝となります。よってXは2㎝となります。
さて、この問題ですが、合同な三角形の存在を知っていますか?知っていればこの問題は一瞬で解くことが出来ました。
赤と青の直角三角形が合同となります。
算数の実力に自信のある子は、なぜこの三角形が合同になるのか、是非考えてみてください。
それでは、今回はこれで失礼します。
受験ドクター講師 川上亮